

Mark Scheme (Results)

Summer 2019

Pearson Edexcel International GCSE In Further Pure Mathematics (4PM1) Paper 01R

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2019 Publications Code 4PM1_01R_2019_MS All the material in this publication is copyright © Pearson Education Ltd 2019

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.
 Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

• Types of mark

- o M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)

• Abbreviations

- cao correct answer only
- \circ ft follow through
- o isw ignore subsequent working

- SC special case
- oe or equivalent (and appropriate)
- o dep dependent
- indep independent
- o awrt answer which rounds to
- o eeoo each error or omission

• No working

If no working is shown then correct answers normally score full marks If no working is shown then incorrect (even though nearly correct) answers score no marks.

• With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks. If a candidate misreads a number from the question. Eg. Uses 252 instead of 255; method marks may be awarded provided the question has not been simplified. Examiners should send any instance of a suspected misread to review. If there is a choice of methods shown, then award the lowest mark, unless the subsequent working makes clear the method that has been used.

• Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.

Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

• Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded to another.

General Principles for Further Pure Mathematics Marking

(but note that specific mark schemes may sometimes override these general principles)

Method mark for solving a 3 term quadratic equation:

1. Factorisation:

 $(x^2 + bx + c) = (x + p)(x + q)$, where |pq| = |c| leading to x = ... $(ax^2 + bx + c) = (mx + p)(nx + q)$ where |pq| = |c| and |mn| = |a| leading to x = ...

2. <u>Formula</u>:

Attempt to use the **correct** formula (shown explicitly or implied by working) with values for a, b and c, leading to x = ...

3. Completing the square:

 $x^{2} + bx + c = 0$: $(x \pm \frac{b}{2})^{2} \pm q \pm c = 0$, $q \neq 0$ leading to x = ...

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration:

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

Use of a formula:

Generally, the method mark is gained by either

quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values

or, where the formula is <u>not</u> quoted, the method mark can be gained by implication from the substitution of <u>correct</u> values and then proceeding to a solution.

Answers without working:

The rubric states "Without sufficient working, correct answers <u>may</u> be awarded no marks".

General policy is that if it could be done "in your head" detailed working would not be required. (Mark schemes may override this eg in a case of "prove or show...." **Exact answers:**

When a question demands an exact answer, all the working must also be exact. Once a candidate loses exactness by resorting to decimals the exactness cannot be regained.

Rounding answers (where accuracy is specified in the question)

Penalise only once per question for failing to round as instructed - ie giving more digits in the answers. Answers with fewer digits are automatically incorrect, but the isw rule may allow the mark to be awarded before the final answer is given.

4PM1 Further Pure Mathematics Paper 1					
Question	Scheme	Marks			
number					
1 (a)	$l = r\theta \Longrightarrow r = \frac{12}{1.5} = 8$	D 1			
	1.5	B1			
(1)		[1]			
(b)	$A = \frac{1.5}{2} \times 8^2 = 48 \text{ (cm}^2\text{)}$	M1A1			
		[2]			
	ALT 1				
	$A = \frac{l^2}{2\theta} = \frac{12^2}{2 \times 1.5} = 48 \text{ (cm}^2\text{)}$	{M1A1}			
	$2\theta = 2 \times 1.5$	[2]			
		[-]			
	ALT 2				
	$A = \frac{1}{2}rl = \frac{1}{2} \times 8 \times 12 = 48 \text{ (cm}^2\text{)}$	{M1A1}			
	$\frac{n}{2} \frac{n}{2} \frac{n}$	[2]			
	Tc	otal 3 marks			
(a)					
B1	<i>r</i> = 8				
(b)	$A = 48 \text{ (cm}^2)$ units not required				
M1					
	Use of $A = \frac{1}{2}r^2\theta$				
A1	$A = 48 \text{ (cm}^2)$ units not required				
ALT 1:	i i (en) units not required				
M1	12				
1011	Use of $A = \frac{l^2}{2\theta}$				
A 1	20				
A1	$A = 48 \text{ (cm}^2)$ units not required				
ALT 2:					
M1	Use of $A = \frac{1}{2}rl$				
	2				
A1	$A = 48 \text{ (cm}^2)$ units not required				
·					

June 2019 4PM1 Further Pure Mathematics Paper 1

Question number	Scheme	Marks
2 (a)	$\cos ABC = \frac{(2x)^2 + (4x)^2 - (3x)^2}{2 \times 2x \times 4x} = \frac{x^2(4+16-9)}{x^2(16)} = \frac{11}{16}$	M1A1
	$l = \sqrt{16^2 - 11^2} = 3\sqrt{15}$ 11	M1
	$\sin ABC = \frac{3\sqrt{15}}{16} *$ ALT	A1 [4]
	$\sin^{2} ABC = 1 - \frac{121}{256} = \frac{135}{256} \Rightarrow \sin ABC = \frac{3\sqrt{15}}{16} \\ \frac{75\sqrt{15}}{64} = \frac{1}{2} \times 2x \times 4x \times \frac{3\sqrt{15}}{16} \Rightarrow x^{2} = \frac{25}{16} \Rightarrow x = \frac{5}{4} \text{ oe}$	{M1A1}
(b)	$\frac{75\sqrt{15}}{64} = \frac{1}{2} \times 2x \times 4x \times \frac{3\sqrt{15}}{16} \Rightarrow x^2 = \frac{25}{16} \Rightarrow x = \frac{5}{4} \text{ oe} $ (positive root only)	M1A1 [2]
	То	tal 6 marks
(a) M1	Use the cosine rule, either form. If not for angle <i>ABC</i> there must be a method shown for obtaining <i>ABC</i>	complete
A1	Correct expression for cos ABC	
M1	Use of Pythagoras' leading to $l = \dots$	
A1 ALT:	Obtains the given expression for sin <i>ABC</i>	
M1	Use of $\sin^2 \theta + \cos^2 \theta = 1$ leading to $\sin^2 \theta =$	
Al	Obtains the given expression for $\sin ABC$	
(b)	- 3 - · · · · · · · · · · · · · · · · · · ·	
Mĺ	Use of $\frac{1}{2}ab\sin C = \frac{75\sqrt{15}}{64}$ Need not be simplified.	
A1	$x = \frac{5}{4}$ oe	

Question number	Scheme	Marks
3 (a)	$\log_3 9 = 2$	B1 [1]
(b)	$\log_3 9t = \log_9 \left(\frac{12}{t}\right)^2 + 2 \Longrightarrow \log_3 9 + \log_3 t = 2\left(\log_9 12 - \log_9 t\right) + 2$	M1M1
	$\log_3 9 + \log_3 t = 2\left(\frac{\log_3 12}{\log_3 9} - \frac{\log_3 t}{\log_3 9}\right) + 2$	M1
	$\Rightarrow \log_3 9 + \log_3 t = \log_3 12 - \log_3 t + 2$	
	$\Rightarrow 2\log_3 t = \log_3 12 \Rightarrow \log_3 t^2 = \log_3 12$	A1
	$\Rightarrow t^2 = 12 \Rightarrow t = 2\sqrt{3}$	M1A1
	Тс	[6] otal 7 marks
(a)		ar / marks
Bĺ	$(\log_3 9 =) 2$	
(b)	The M marks can be seen anywhere in the solution	
M1	Use of $\log AB = \log A + \log B$ or $\log \frac{A}{B} = \log A - \log B$	
M1	Use of $\log A^n = n \log A$	
M1	Use of $\log_a x = \frac{\log_b x}{\log_b a}$	
A1	Simplifying to $2\log_3 t = \log_3 12$ oe or $\log_3 \left(\frac{9t^2}{12}\right) = 2$ oe	
M1	Simplify to $t^2 =$	
A1	$t = 2\sqrt{3}$	

Question number	Scheme	Marks
4 (a)	$f'(x) = 3e^{3x} (1+2x)^{\frac{1}{2}} + e^{3x} \times \frac{1}{2} \times 2(1+2x)^{-\frac{1}{2}}$	M1A1
	$\Rightarrow f'(x) = \frac{3e^{3x}(1+2x)+e^{3x}}{\sqrt{1+2x}} \Rightarrow f'(x) = \frac{2e^{3x}(2+3x)}{\sqrt{1+2x}} *$	M1A1 [4]
(b)	When $x = 0$	
	$f'(0) = \frac{2e^0(2+0)}{\sqrt{1+0}} = 4$ Gradient of Normal $= -\frac{1}{4}$	B1B1
	$f(0) = e^0 \sqrt{1+2 \times 0} = 1$	B1
	Equation of Normal to curve $y = f(x)$ when $x = 0$	
	$y-1 = -\frac{1}{4}(x-0)$	M1A1
	$\Rightarrow x + 4y - 4 = 0$	A1 [6]
	Total	10 marks
(a)		
M1	Use of the product rule. Sum of two terms (either way round) with x^n - (Condone e^{3x} instead of $3e^{3x}$)	$\rightarrow x^{n-1}$
A1	Both terms correct	
M1	Simplifying their product rule expression to a single expression with denominator $a\sqrt{1+2x}$ where <i>a</i> is a constant	
A1	Obtains the given expression	
(b)		
Bĺ	f'(0) = 4	
B1	Gradient of Normal $= -\frac{1}{4}$	
B1	f(0) = 1	
M1	Substitution of $(0, 1)$ and 'gradient of normal' (but not 4) into the form line	nula for a
A1	$y-1 = -\frac{1}{4}(x-0)$ oe	
A1	x + 4y - 4 = 0	

Question number	Scheme	Marks					
5							
	$A = \pi (3r)^{2} = 9\pi r^{2} \Longrightarrow \frac{dA}{dr} = 18\pi r$ $\delta A \approx \frac{dA}{dr} \times \delta r = 18\pi r (\delta r)$	M1					
	$\delta A \approx \frac{\mathrm{d}A}{\mathrm{d}r} \times \delta r = 18\pi r \left(\delta r\right)$						
	$\frac{\delta A}{A} \approx \frac{18\pi r}{A} \delta r = \frac{18\pi r}{9\pi r^2} \delta r = 2\frac{\delta r}{r}$	M1					
	So when $\frac{\delta r}{r} = 0.05\% \Rightarrow \frac{\delta A}{A} \approx 0.1\%$ so the area increases by about 0.1%	M1A1					
	ALT						
	Radius (after increase) = $3r \times \left(1 + \frac{0.05}{100}\right)$	{M1}					
	= 3.0015r	{ B 1}					
	Area before increase = $\pi (3r)^2 = 9\pi r^2$ Area after increase =						
	$A = \pi \left(3.0015r \right)^2 = 9.00900225\pi r^2$	$\{M1\}$					
	Percentage increase = $\frac{9.00900225\pi r^2 - 9\pi r^2}{9\pi r^2} \times 100 = 0.100025 \approx 0.1\%$	{M1} {A1}					
	so the area increases by about 0.1%						
) (1		5 marks					
M1 B1	Differentiate A wrt r						
DI	Use of $\delta A \approx \frac{\mathrm{d}A}{\mathrm{d}r} \times \delta r$						
M1	Use of $\frac{\delta A}{4}$						
M1	Use of $\frac{\delta r}{r} = 0.05\%$						
A1 ALT:	Area increases by about 0.1%						
M1	Finding the radius after the increase (may be implied by $3.0015r$)						
B1	3.0015r (may be implied by a correct area after the increase)						
M1	Finding the area after the increase						
M1	Use of $\frac{\text{Area (new)-Area (original)}}{\text{Area (original)}} \times 100$						
A1	Area increases by about 0.1%						

Question number	Scheme	Marks
6 (a)	$a = 4 \times 1 - 3 = 1,$ $(d = 4)$	B1
	$\sum_{r=1}^{n} 4r - 3 = \frac{n}{2} (2 \times 1 + (n-1)4) = n(2n-1)*$	M1A1 [3]
(b)	$n(2n-1) > 1000 \Longrightarrow 2n^2 - n - 1000 > 0$	M1
	$\frac{-(-1)\pm\sqrt{(-1)^2-4\times2\times(-1000)}}{2\times2} \Rightarrow n > 22.612 \Rightarrow n = 23$	M1A1 [3]
(c)	$3t_{(n+7)} + 18 = S_{(n+4)}$	
	$\Rightarrow 3 \left[4(n+7)-3 \right] + 18 = (n+4) \left[2(n+4)-1 \right]$	M1
	$\Rightarrow 2n^2 + 3n - 65 = 0$	A1
	$2n^{2} + 3n - 65 = (2n + 13)(n - 5) = 0 \Longrightarrow n = 5$	depM1A1 [4]
	Tot	al 10 marks
(a) B1	a = 1	
M1	Use of $S = \frac{n}{2} (2a + (n-1)d)$ or $S = \frac{n}{2} (a+L)$	
A1	Obtains the given expression	
(b)		
M1	Sets up a 3 term quadratic from the given information (Condone = rat	her than >)
M1	Solve their 3 term quadratic (May be implied by 22.6)	
A1	n = 23	
(c)		
M1	Substitution of $n + 7$ and $n + 4$	
Al	A correct 3 term quadratic	
depM1	Solve their 3 term quadratic (Dependent on previous M mark)	
A1	n = 5 (must reject other answer if offered)	

Question number	Scheme	Marks
7 (a)	$\overrightarrow{BC} = \overrightarrow{BO} + \overrightarrow{OC}$	M1
	$\overrightarrow{BC} = -(15\mathbf{i} - 6\mathbf{j}) + 8\mathbf{i} + \mathbf{j} = -7\mathbf{i} + 7\mathbf{j}$	A1
(b)	$\left \overline{BC}\right = \sqrt{98} = \left(7\sqrt{2}\right)$	[2] B1
	Unit vector is $\frac{1}{\sqrt{98}}(-7\mathbf{i}+7\mathbf{j})$ oe	B1 [2]
(c)	$\left(\overrightarrow{OM} = 4\mathbf{i} - 3\mathbf{j}\right) \overrightarrow{ON} = 5\mathbf{i} - 2\mathbf{j}$	B1
	$\Rightarrow \overrightarrow{MN} = -(4\mathbf{i} - 3\mathbf{j}) + 5\mathbf{i} - 2\mathbf{j} (= \mathbf{i} + \mathbf{j})$	M1
	$\Rightarrow \overline{MC} = -(4\mathbf{i} - 3\mathbf{j}) + 8\mathbf{i} + \mathbf{j} (= 4\mathbf{i} + 4\mathbf{j})$	M1
	Conclusion: \overrightarrow{MN} and \overrightarrow{MC} are parallel oe (and have same point of origin (<i>M</i>)) hence they are collinear.	A1 [4]
	ALT 1	
	$\left(\overrightarrow{OM} = 4\mathbf{i} - 3\mathbf{j}\right) \overrightarrow{ON} = 5\mathbf{i} - 2\mathbf{j} \text{or} \overrightarrow{NB} = 10\mathbf{i} - 4\mathbf{j}$	
	$\Rightarrow \overrightarrow{MN} = -(4\mathbf{i} - 3\mathbf{j}) + 5\mathbf{i} - 2\mathbf{j}(=\mathbf{i} + \mathbf{j})$	{ B 1}
	$\Rightarrow \overrightarrow{NC} = 10\mathbf{i} - 4\mathbf{j} - 7\mathbf{i} + 7\mathbf{j} (= 3\mathbf{i} + 3\mathbf{j}) \text{ or }$	{M1}
	$\Rightarrow \overrightarrow{NC} = -(5\mathbf{i} - 2\mathbf{j}) + 8\mathbf{i} + \mathbf{j} (= 3\mathbf{i} + 3\mathbf{j})$	{M1}
	Conclusion: \overrightarrow{MN} and \overrightarrow{NC} are parallel or (and share the same point (<i>N</i>)) hence they are collinear.	
	ALT 2	{A1} [4]
	$\left(\overline{OM} = 4\mathbf{i} - 3\mathbf{j}\right) \overline{ON} = 5\mathbf{i} - 2\mathbf{j} \text{or} \overline{NB} = 10\mathbf{i} - 4\mathbf{j}$	
	$\Rightarrow \overrightarrow{MC} = -(4\mathbf{i} - 3\mathbf{j}) + 8\mathbf{i} + \mathbf{j} (= 4\mathbf{i} + 4\mathbf{j})$	{ B 1}
	$\Rightarrow \overrightarrow{NC} = 10\mathbf{i} - 4\mathbf{j} - 7\mathbf{i} + 7\mathbf{j} (= 3\mathbf{i} + 3\mathbf{j})$	{M1}
	Conclusion: \overrightarrow{MC} and \overrightarrow{NC} are parallel oe(and share the same point	
	(C)) hence they are collinear.	{M1}
		{A1} [4]
	Tot	al 8 marks

(a)	
M1	$\overrightarrow{BC} = \overrightarrow{BO} + \overrightarrow{OC}$
A1	$\overrightarrow{BC} = -7\mathbf{i} + 7\mathbf{j}$
(b)	
B1	$\sqrt{98}$ oe
B1	$\frac{1}{\sqrt{98}} \left(-7\mathbf{i} + 7\mathbf{j} \right) \text{oe}$
(c)	
B1	$\overrightarrow{ON} = 5\mathbf{i} - 2\mathbf{j} \pmod{\mathbf{k}}$ (may be implied by \overrightarrow{MN})
M1	$\overrightarrow{MN} = -(4\mathbf{i} - 3\mathbf{j}) + 5\mathbf{i} - 2\mathbf{j}(=\mathbf{i} + \mathbf{j})$
M1	$\overrightarrow{MC} = -(4\mathbf{i} - 3\mathbf{j}) + 8\mathbf{i} + \mathbf{j} (= 4\mathbf{i} + 4\mathbf{j})$
A1	Correct conclusion from correct working e.g. $\overrightarrow{MC} = 4\overrightarrow{MN}$
ALT 1	
B1	$\overrightarrow{ON} = 5\mathbf{i} - 2\mathbf{j}$ or $\overrightarrow{NB} = 10\mathbf{i} - 4\mathbf{j}$ (may be implied by \overrightarrow{MN} or \overrightarrow{NC})
M1	$\overrightarrow{MN} = -(4\mathbf{i} - 3\mathbf{j}) + 5\mathbf{i} - 2\mathbf{j} (= \mathbf{i} + \mathbf{j})$
M1	$\overrightarrow{NC} = 10\mathbf{i} - 4\mathbf{j} - 7\mathbf{i} + 7\mathbf{j} (= 3\mathbf{i} + 3\mathbf{j}) \text{ or } -(5\mathbf{i} - 2\mathbf{j}) + 8\mathbf{i} + \mathbf{j} (= 3\mathbf{i} + 3\mathbf{j})$
A1	Correct conclusion from correct working e.g. $\overrightarrow{NC} = 3\overrightarrow{MN}$
ALT 2	
B1	\overline{ND} 10: 4: (may be implied by \overline{NC})
A1	$\overrightarrow{NC} = 10\mathbf{i} - 4\mathbf{j} - 7\mathbf{i} + 7\mathbf{j} (= 3\mathbf{i} + 3\mathbf{j})$
	Correct conclusion from correct working e.g. $\overrightarrow{NC} = \frac{3}{4}\overrightarrow{MC}$
	For part c: Send any geometrical solutions to review
(c) B1 M1 M1 A1 ALT 1 B1 M1 M1 A1 ALT 2	$\overline{ON} = 5\mathbf{i} - 2\mathbf{j} \text{ (may be implied by } \overline{MN} \text{)}$ $\overline{MN} = -(4\mathbf{i} - 3\mathbf{j}) + 5\mathbf{i} - 2\mathbf{j}(=\mathbf{i} + \mathbf{j})$ $\overline{MC} = -(4\mathbf{i} - 3\mathbf{j}) + 8\mathbf{i} + \mathbf{j}(=4\mathbf{i} + 4\mathbf{j})$ Correct conclusion from correct working e.g. $\overline{MC} = 4\overline{MN}$ $\overline{ON} = 5\mathbf{i} - 2\mathbf{j} \text{ or } \overline{NB} = 10\mathbf{i} - 4\mathbf{j} \text{ (may be implied by } \overline{MN} \text{ or } \overline{NC} \text{)}$ $\overline{MN} = -(4\mathbf{i} - 3\mathbf{j}) + 5\mathbf{i} - 2\mathbf{j}(=\mathbf{i} + \mathbf{j})$ $\overline{NC} = 10\mathbf{i} - 4\mathbf{j} - 7\mathbf{i} + 7\mathbf{j}(=3\mathbf{i} + 3\mathbf{j}) \text{ or } -(5\mathbf{i} - 2\mathbf{j}) + 8\mathbf{i} + \mathbf{j}(=3\mathbf{i} + 3\mathbf{j})$ Correct conclusion from correct working e.g. $\overline{NC} = 3\overline{MN}$ $\overline{NB} = 10\mathbf{i} - 4\mathbf{j} \text{ (may be implied by } \overline{NC} \text{)}$ $\overline{MC} = -(4\mathbf{i} - 3\mathbf{j}) + 8\mathbf{i} + \mathbf{j}(=4\mathbf{i} + 4\mathbf{j})$ $\overline{NC} = 10\mathbf{i} - 4\mathbf{j} - 7\mathbf{i} + 7\mathbf{j}(=3\mathbf{i} + 3\mathbf{j})$ Correct conclusion from correct working e.g. $\overline{NC} = \frac{3}{4}\overline{MC}$

Question number	Scheme								Marks	
8 (a)	Г									
		x	0	0.25	0.5	1	1.5	2	3	B2 [2]
		y	2	2.41	2.69	3.10	3.39	3.61	3.95	[2]
(b)	Points plo Points joi				-					B1ft B1ft [2]
(c)	$\ln(2x+1)$)=	3x-4	$\Rightarrow \ln(2$	(x+1)+2	k=3x-2				M1
	Graph of	-				-		(Accep	r 1.9 t either)	M1A1 [3]
(d)	$e^{(6-x)} = (2$	2 <i>x</i> +	$(-1)^2 \Rightarrow$	$\rightarrow 6 - x =$	$\ln(2x +$	$1)^2 \Rightarrow 6-$	$-x=2\ln($	(2x+1)		M1
	$\Rightarrow \ln(2x)$	$\Rightarrow \ln(2x+1)+2=5-\frac{x}{2}$								M1
	Graph of $y = 5 - \frac{x}{2}$ drawn. Intersection point is at $x = 2.4$ or 2.5								M1A1	
	(Accept either) Total								[4]	
(a) B2	All 3 points correct (B1 for 2 points correct)									
(b) B1ft B1ft (c)		Points plotted ft their table allow half a square tolerance Points joined together with a smooth curve ft their table								
(c) M1	$\ln(2x+1)$)+:	2=3x	-2						
M1	y = 3x - 2				. 1.0	1.0.4				
A1 (d) M1		Intersection point is at (x =) 1.8 or 1.9 Accept either $6-x = 2\ln(2x+1)$								
M1	$\ln(2x+1)$,							
M1	Graph of $y = 5 - \frac{x}{2}$ drawn									
A1	Intersection		2			2.5 Acce	pt either			

Question number	Scheme	Marks			
9 (a)	$540-3r^2h \rightarrow h-\frac{180}{10}$				
	$540 = 3x^2 h \Longrightarrow h = \frac{180}{x^2}$	M1			
	$S = 2(3x^2 + 3xh + xh) = 6x^2 + 8xh$	M1			
	$\Rightarrow S = 6x^{2} + 8x \times \frac{180}{x^{2}} = 6x^{2} + \frac{1440}{x} *$ $S = 6x^{2} + 1440x^{-1}$	depM1A1 [4]			
(b)	$S = 6x^2 + 1440x^{-1}$				
	$\frac{\mathrm{d}S}{\mathrm{d}x} = 12x - 1440x^{-2}$	M1			
	At min/max $\frac{\mathrm{d}S}{\mathrm{d}x} = 0$				
	$12x - 1440x^{-2} = 0 \Longrightarrow x^3 = 120 \Longrightarrow x = 4.93242$	M1A1			
	$x \approx 4.93$ (3sf)				
	$\frac{d^2S}{dx^2} = 12 + \frac{2880}{x^3} \implies \text{Always positive for positive values of } x, \text{ hence}$	M1A1ft			
	minimum	[6]			
		[5]			
(c)	$S = 6 \times 4.93242^2 + \frac{1440}{4.93242} = 437.9185 \approx 438$	B1 [1]			
	Tot	al 10 marks			
(a)					
M1	Rearrange the equation for volume to make <i>h</i> the subject				
M1	Obtains an expression for S in terms of x and h .				
depM1	Dependent on previous M1. Use the equation to eliminate h to give an	1			
A 1	expression for S in terms of x only.				
A1 (b)	Obtains the given expression for <i>S</i> .				
(b) M1	Attempts to differentiates C_{n} with $u^n \rightarrow u^{n-1}$				
M1	Attempts to differentiates <i>S</i> wrt <i>x</i> with $x^n \rightarrow x^{n-1}$ Equate their derivative to zero and solve for <i>x</i>				
Al					
M1	Correct value of x, min 3 sf (Do not accept $\sqrt[3]{120}$) Obtains a correct second derivative from their first derivative.				
	(If signs of $\frac{dS}{dx}$ on either side of their x are considered, numerical calc	ulations			
A1 ft	must be shown.) Establish that the minimum has been obtained and give a conclusion. No need to calculate the value of the second derivative.				
	Follow through their x provided $x > 0$ and the second derivative is alg correct or if signs of $\frac{dS}{dx}$ on either side of their x were considered these				
	dx be calculated and correct				
(c)					
B1	Correct value of S. Must be 3 sf				

Question number	Scheme	Marks
10 (a)	$6x - x^2 = -\left(x^2 - 6x\right)$	
	$-(x^{2}-6x) = -\{(x-3)^{2}-9\} \Longrightarrow f(x) = -(x-3)^{2}+9$	M1A1A1
	D = -1, E = -3 and F = 9	[3]
(b)	(i) $f(x)_{max} = 9$	B1ft
	(ii) $x = 3$	B1ft [2]
(c)	$6x - x^2 = x^2 - 4x + 8 \Longrightarrow 2x^2 - 10x + 8 = 0$	M1
	$2x^{2} - 10x + 8 = (2x - 2)(x - 4) \Longrightarrow x = 1, \ x = 4$	M1A1
	y = 5, y = 8	Al
	Coordinates are $(1, 5)$ and $(4, 8)$	[4]
(d)	Area = $\int_{1}^{4} (6x - x^2) dx - \int_{1}^{4} (x^2 - 4x + 8) dx = \int_{1}^{4} [-2x^2 + 10x - 8] dx$	M1
	$= \left[\frac{-2x^{3}}{3} + \frac{10x^{2}}{2} - 8x\right]_{1}^{4}$	M1
	$= \left(\frac{-2 \times 4^{3}}{3} + \frac{10 \times 4^{2}}{2} - 8 \times 4\right) - \left(\frac{-2 \times 1^{3}}{3} + \frac{10 \times 1^{2}}{2} - 8 \times 1\right) = 9 \text{ (units}^{2})$	M1A1 [4]
	Tot	al 13 marks
(a) M1	An attempt to factorise to make x^2 positive e.g. $-(x \pm a)^2 \pm b$	
A1	Complete the square to obtain an expression in the form $-(x \pm 3)^2 \pm a$	NB Any
	expression in this form will score M1A1	
A1 (b)	D = -1, E = -3 and F = 9	
(b) B1 ft	$(f(x)_{max} =)9$ or follow through their value for <i>F</i> .	
B1 ft	(x =)3 or follow through their value for <i>E</i> .	
(c)		
M1 M1	Equating the two curves and simplifying to a 3 term quadratic Solve their 3 term quadratic	
Al	x = 1, x = 4	
A1	(1, 5) and $(4, 8)$	
(d) M1	Use of $\int_{a}^{b} (f(x) - g(x)) dx$ or $\int_{a}^{b} f(x) dx - \int_{a}^{b} g(x) dx$ Ignore limits	
	(f(x) and g(x) can be either way round)	
M1	Attempt the integration. Limits not needed.	
M1 A1	Substitute the correct limits. 9 (units ²)	
	NB A correct answer with no working will score 4 out of 4	

Question number	Scheme	Marks
	$\frac{y-6}{x-5} = \frac{6-3}{51} \Longrightarrow 2y-12 = x-5$	M1A1 [2]
(b)	$\left(\frac{2\times5+1\times-1}{2+1},\frac{2\times6+1\times3}{3}\right) \Rightarrow (3, 5)^*$	M1A1 [2]
(a) M1	A fully correct method for finding the equation of a straight line e.g. $\frac{y - y_1}{x - x_1} = \frac{y_2 - y_1}{x_2 - x_1}$	
A1	2y - 12 = x - 5 oe	
(b)		
M1	Use of $\left(\frac{qx_1 + px_2}{p+q}, \frac{qy_1 + py_2}{p+q}\right)$ or $\begin{pmatrix} -1\\ 3 \end{pmatrix} + \frac{2}{3} \times \begin{pmatrix} 6\\ 3 \end{pmatrix}$	
A1	Obtains the given coordinates	

(c)	Gradient of perpendicular to $AB = -2$	B1	
	$\frac{5-n}{3-m} = -2 \Longrightarrow (11 = 2m+n)$	M1	
	Radius = 5, so the length of $AC = 10$		
	$100 = (3-n)^{2} + (-1-m)^{2} \Longrightarrow (90 = n^{2} - 6n + m^{2} + 2m)$	M1	
	Solves simultaneous equations $90 = 121 - 44m + 4m^2 - 6(11 - 2m) + m^2 + 2m$	depM1	
	$35 = 5m^2 - 30m \Longrightarrow m^2 - 6m - 7 = 0$	depM1	
	$(m-7)(m+1) = 0 \Longrightarrow m = 7, n = -3$	A1 [6]	
ALT (c) using vectors			
(c)	$\overrightarrow{AB} = \begin{pmatrix} 5\\6 \end{pmatrix} - \begin{pmatrix} -1\\3 \end{pmatrix} = \begin{pmatrix} 6\\3 \end{pmatrix} \Rightarrow \text{ Perpendicular vector to } \overrightarrow{AB} = \begin{pmatrix} 3\\-6 \end{pmatrix}$	B1	
	$\left \overrightarrow{AB} \right = \sqrt{45} = 3\sqrt{5} \Longrightarrow \left AP \right = 2\sqrt{5}$ $\left \overrightarrow{AC} \right = 10$	M1M1	
	Using Pythagoras $\left \overrightarrow{PC} \right = \sqrt{100 - 20} = \sqrt{80} = 4\sqrt{5}$	depM1	
	$\overrightarrow{PC} = \frac{4\sqrt{5}}{3\sqrt{5}} \times \begin{pmatrix} 3\\ -6 \end{pmatrix} = \begin{pmatrix} 4\\ -8 \end{pmatrix}$	depM1	
	\Rightarrow Coordinates of <i>C</i> are $(3+(4), 5+(-8)) \Rightarrow (7,-3)$	A1 [6]	
(c) B1 M1 M1 depM1 depM1 A1 ALT: B1 M1 M1 depM1	Gradient of perpendicular to $AB = -2$ (Can be implied by M1) Obtains an equation using the gradient of the perpendicular and the point and P (Condone if given in terms of x and y) Obtains a second equation using $AC = 10$ and the points A and C Solve simultaneously to obtain a 3 term quadratic Solve their 3 term quadratic m = 7, n = -3 Perpendicular vector to $\overline{AB} = \begin{pmatrix} 3 \\ -6 \end{pmatrix}$ Finds $ \overline{AB} $ or $ \overline{AP} $ or $\overline{PC} = \begin{pmatrix} 3 \\ 5 \end{pmatrix} + \lambda \begin{pmatrix} 3 \\ -6 \end{pmatrix}$ States $ \overline{AC} = 10$ or $\lambda = \frac{4}{3}$ Use of Pythagoras to find $ \overline{PC} $ or $\overline{PC} = \begin{pmatrix} 3 \\ 5 \end{pmatrix} + \frac{4}{3} \times \begin{pmatrix} 3 \\ -6 \end{pmatrix}$	nts (<i>m</i> , <i>n</i>)	
depM1 A1	Finds \overrightarrow{PC} m = 7, n = -3		

(d)	$y - \frac{1}{3}$ 1 ($x - 13$) $y - 3$ 2 ($2 - 1$)		
	$\left \frac{y3'}{x - 7'} = \frac{1}{2} \Longrightarrow \left\{ y = \frac{x - 13}{2} \right\}, \frac{y - 3}{x - 1} = -2 \Longrightarrow \left\{ y = -2x + 1 \right\}$	M1	
	Solving simultaneous equations by any method		
		N/1 A 1	
	$\frac{x-13}{2} = -2x+1 \Longrightarrow p = 3 \text{ and } q = -5$	M1A1 [3]	
ALT (d) using vectors			
(d)			
	$\overrightarrow{AD} = \overrightarrow{PC} = \begin{pmatrix} 4 \\ -8 \end{pmatrix}$	M1	
	Coordinates of point D \Rightarrow $(-1+(4), 3+(-8)) = (3, -5)$	M1A1	
	= (1, 0) = (0, 0)	[3]	
(e)	$I = (1 - 0.4)^2 ((1 - 1)^2)^2 = 2\sqrt{5}$	[9]	
	Length of AB $\sqrt{(6-3)^2 + (51)^2} = 3\sqrt{5}$	M1	
	Length of CD $\sqrt{(-3-5)^2+(7-3)^2} = \sqrt{20} = 2\sqrt{5}$	A1	
		N/1 A 1	
	Area of trapezium = $\frac{1}{2}(3\sqrt{5}+2\sqrt{5})\times 4\sqrt{5} = 50 \text{ (units}^2)$	M1A1 [4]	
ALT (e) 1	using vectors	נדן	
	Area = $\frac{1}{2} \begin{vmatrix} -1 & 5 & 7 & 3 & -1 \\ 3 & 6 & -3 & -5 & 3 \end{vmatrix}$		
	$=\frac{1}{2}\left[\left(-6-15-35+9\right)-\left(15+42-9+5\right)\right]=50$	M1A1	
	2-	M1A1	
		[4]	
	Total	17 marks	
(d)			
M1	Obtains a linear equation using the given information		
M1	Obtains a 2 nd linear equation using the given information and solves		
	simultaneously	_	
A1	p = 3 and $q = -5$ NB A correct answer, no incorrect working scores 3	out of 3	
ALT:			
M1	Use $\overrightarrow{AD} = \overrightarrow{PC}$		
M1	Substitution of the point $(-1, 3)$ to find the coordinates of point D		
A1	p = 3 and $q = -5$		
(e)	Use Dethe same to find either the lands of AD CD		
M1 A1	Use Pythagoras to find either the length of <i>AB</i> or <i>CD</i> Both lengths correct		
M1	Both lengths correct Use of area of trapezium formula using their lengths		
A1	50 (units not required)		
ALT:			
M1	$1 a c e \sigma a$		
	Use of Area = $\frac{1}{2} \begin{vmatrix} a & c & e & g & a \\ b & d & f & h & b \end{vmatrix}$ with the coordinates of A, B, C and	D	
A1			
AI	Area = $\frac{1}{2} \begin{vmatrix} -1 & 5 & 7 & 3 & -1 \\ 3 & 6 & -3 & -5 & 3 \end{vmatrix}$		
M1	Attempt to evaluate the Area		
A1	50 (units not required)		

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom